NumPy (pronounced as Num-pee or Num-pai) is one of the important python packages (other being SciPy) for scientific computing. NumPy offers fast and flexible data structures for multi-dimensional arrays and matrices with numerous mathematical functions/operations associated with it. Core data structure in NumPy is “ndarray”, short for n-dimesional array for storing numeric values. Let us get started with some basic commands with NumPy 1d-array (one-dimensional array).
How to import NumPy package?
# import numpy package with nickname "np" >import numpy as np
How to create a one-dimensional array?: Numpy array()
We can create a NumPy array using the function array with a list of numbers as argument.
# create a numpy array >my_first_array = np.array([1, 2, 3,4,5]) >my_first_array array([1, 2, 3, 4, 5])
How to find the length (or number of elements) of a 1d-array?
We can find the number of elements in a 1d-array or the length of the array using the function len.
# length of the array >len(my_first_array) 5
How to sum all the elements in 1d-array?: Numpy sum()
If we want to sum all the elements in a 1d numpy array using the function sum. This is way faster than a manually using a for loop going through all elements in a 1d-array.
# sum of all elements in the array >np.sum(my_first_array) >my_first_array.sum() 15
How to find the maximum value in NumPy 1d-array?: Numpy max()
We can find the maximum value stored in 1d-array using NumPy’s max function.
# maximum value the elements in the array >np.max(my_first_array) >my_first_array.max() 5
How to find the minimum value in NumPy 1d-array?: Numpy min()
Similarly, we can find the minimum value stored in 1d-array using NumPy’s min function.
# minimum value the elements in the array >np.min(my_first_array) >my_first_array.min() 1
How to create NumPy 1d-array with 1s?: Numpy ones()
Sometimes you may want to create a numpy array with 1s in all elements. NumPy’s ones function can create 1d-array with 1s. We need to specify the length of NumPy array as argument.
# create a numpy array of 1s (of length 5) >np.ones(5) array([ 1., 1., 1., 1., 1.])
How to create NumPy 1d-array with 0s?: Numpy zeros()
Similarly we can create 1d NumPy array with 0s in it using zeros function.
# create a numpy array of length 5 with 5 zeros >np.zeros(5) array([ 0., 0., 0., 0., 0.])
How to create empty NumPy 1d-array of specified length?: Numpy empty()
Sometime you may want to create an empty array with no values in it. We can use NumPy’s empty function to create empty NumPy array.
# create an empty numpy array of length 5 >np.empty(5) array([ 1.49166815e-154, 1.49166815e-154, 3.03574399e-152, 2.64522460e+185, 1.45913207e-152])
How to create NumPy 1d-array with a range of numbers?: Numpy arange()
# create a numby array with a range of numbers 0 to 9 >np.arange(10) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) # create a numpy array with a range of numbers and step size >np.arange(0, 9, 2) array([0, 2, 4, 6, 8])
How to create NumPy 1d-array with random numbers?
# create an array with random numbers >np.random.random(5) array([ 0.4648749 , 0.9236576 , 0.93804724, 0.86871356, 0.49829188])
How to create NumPy 1d-array with equally spaced numbers in an interval?
# Return evenly spaced numbers over a specified interval. >np.linspace(0, 1, 10) array([ 0. , 0.11111111, 0.22222222, 0.33333333, 0.44444444, 0.55555556, 0.66666667, 0.77777778, 0.88888889, 1. ])