• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Python and R Tips

Learn Data Science with Python and R

  • Home
  • Python
  • Pandas
    • Pandas 101
  • tidyverse
    • tidyverse 101
  • R
  • Linux
  • Conferences
  • Python Books
  • About
    • Privacy Policy
You are here: Home / Pandas 101 / How To Create a Pandas Data Frame From Lists?

How To Create a Pandas Data Frame From Lists?

March 25, 2020 by cmdlinetips

In this tutorial, we will see an example of creating Pandas’ dataframe from multiple lists using Pandas’ DataFrame() function..

Let us load Pandas and check its version.

import pandas as pd
pd.__version__
1.0.0

Create two lists

Let us create two lists and use them to create dataframe.

# Create two lists in Python
education = ["Bachelor's", "Less than Bachelor's",
             "Master's","PhD","Professional"]
salary = [110000,105000,126000,144200,96000]

Create a dictionary from two lists

We will create a dictionary using the two lists as values and the variable names we want as columns of dataframe as keys.

# create a dictionary using lists
a_dict = {"Education":education,
                  "Salary":salary}

Create a data frame from dictionary

We can use the dictionary as argument to Pandas’ DataFrame() and create Pandas dataframe.

# Create a data frame using the dictionary
df = pd.DataFrame(a_dict)
df

Education	Salary
0	Bachelor's	110000
1	Less than Bachelor's	105000
2	Master's	126000
3	PhD	144200
4	Professional	96000

Create a data frame from lists in one step

In the above example, we created a dataframe in Pandas in two steps; create dictionary first and use it to create a dataframe.

Here we combine those two steps and creating dataframe by creating dictionary on the fly as an argument.

# Create dataframe in one step
df = pd.DataFrame({"Education":education,
                  "Salary":salary})

And we get the same dataframe.

df

Education	Salary
0	Bachelor's	110000
1	Less than Bachelor's	105000
2	Master's	126000
3	PhD	144200
4	Professional	95967

This post is part of the series on Pandas 101, a tutorial covering tips and tricks on using Pandas for data munging and analysis.

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X

Related posts:

Default ThumbnailHow To Save a Pandas Data Frame as CSV File? Default ThumbnailHow To Save Pandas Dataframe as Excel File? Default ThumbnailHow to Save Pandas Dataframe as gzip/zip File? Default ThumbnailHow to Create a Pandas Dataframe from Lists

Filed Under: Pandas 101

Reader Interactions

Trackbacks

  1. How To Move a Column to First Position in Pandas DataFrame? - Python and R Tips says:
    March 27, 2020 at 12:01 am

    […] will generate some data using NumPy’s random module and store it in a Pandas dataframe. Unlike before, here we create a Pandas dataframe using two-dimensional NumPy array of size 8×3 and specify […]

Primary Sidebar

Subscribe to Python and R Tips and Learn Data Science

Learn Pandas in Python and Tidyverse in R

Tags

Altair Basic NumPy Book Review Data Science Data Science Books Data Science Resources Data Science Roundup Data Visualization Dimensionality Reduction Dropbox Dropbox Free Space Dropbox Tips Emacs Emacs Tips ggplot2 Linux Commands Linux Tips Mac Os X Tips Maximum Likelihood Estimation in R MLE in R NumPy Pandas Pandas 101 Pandas Dataframe Pandas Data Frame pandas groupby() Pandas select columns Pandas select_dtypes Python Python 3 Python Boxplot Python Tips R rstats R Tips Seaborn Seaborn Boxplot Seaborn Catplot Shell Scripting Sparse Matrix in Python tidy evaluation tidyverse tidyverse 101 Vim Vim Tips

RSS RSS

  • How to convert row names to a column in Pandas
  • How to resize an image with PyTorch
  • Fashion-MNIST data from PyTorch
  • Pandas case_when() with multiple examples
  • An Introduction to Statistical Learning: with Applications in Python Is Here
  • 10 Tips to customize ggplot2 title text
  • 8 Plot types with Matplotlib in Python
  • PCA on S&P 500 Stock Return Data
  • Linear Regression with Matrix Decomposition Methods
  • Numpy’s random choice() function

Copyright © 2025 · Lifestyle Pro on Genesis Framework · WordPress · Log in

Go to mobile version