• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Python and R Tips

Learn Data Science with Python and R

  • Home
  • Python
  • Pandas
    • Pandas 101
  • tidyverse
    • tidyverse 101
  • R
  • Linux
  • Conferences
  • Python Books
  • About
    • Privacy Policy
You are here: Home / Pandas 101 / How To Save Pandas Dataframe as Excel File?

How To Save Pandas Dataframe as Excel File?

May 9, 2020 by cmdlinetips

In this post, we will see examples of saving a Pandas dataframe as Excel file. Pandas has to_excel() function to write a dataframe into Excel file.

Let us load Pandas.

# load pandas
import pandas as pd

We will create two lists and us these to create a dataframe as before.

education = ["Bachelor's", "Less than Bachelor's","Master's","PhD","Professional"]
salary = [110000,105000,126000,144200,96000]

We can create a Pandas dataframe using the two lists to make a dictionary with DataFrame() function. Our toy dataframe contains two columns.

# Create dataframe in one step
df = pd.DataFrame({"Education":education,
                  "Salary":salary})
df
	Education	Salary
0	Bachelor's	110000
1	Less than Bachelor's	105000
2	Master's	126000
3	PhD	144200
4	Professional	95967

Now we have the dataframe ready and we can use Pandas’ to_excel() function to write the dataframe to excel file. In the example, below we specify the Excel file name as argument to to_excel() function.

# wrkite dataframe to excel file
df.to_excel("education_salary.xls")

Pandas to_excel() function has number of useful arguments to customize the excel file. For example, we can save the dataframe as excel file without index using “index=False” as additional argument.

# wrkite dataframe to excel file with no index
df.to_excel("education_salary.xls", index=False)

One of the common uses in excel file is naming the excel sheet. We can name the sheet using “sheet_name” argument as shown below.

# write dataframe to excel file with sheet name
df.to_excel("education_salary.xls", 
             index=False,
             sheet_name="data")

This post is part of the series on Byte Size Pandas: Pandas 101, a tutorial covering tips and tricks on using Pandas for data munging and analysis.

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X

Related posts:

Default ThumbnailHow to Save Pandas Dataframe as gzip/zip File? Default ThumbnailHow To Save a Pandas Data Frame as CSV File? Default ThumbnailHow To Create a Pandas Data Frame From Lists? Default ThumbnailHow To Drop Multiple Columns in Pandas Dataframe?

Filed Under: Pandas 101 Tagged With: Python

Primary Sidebar

Subscribe to Python and R Tips and Learn Data Science

Learn Pandas in Python and Tidyverse in R

Tags

Altair Basic NumPy Book Review Data Science Data Science Books Data Science Resources Data Science Roundup Data Visualization Dimensionality Reduction Dropbox Dropbox Free Space Dropbox Tips Emacs Emacs Tips ggplot2 Linux Commands Linux Tips Mac Os X Tips Maximum Likelihood Estimation in R MLE in R NumPy Pandas Pandas 101 Pandas Dataframe Pandas Data Frame pandas groupby() Pandas select columns Pandas select_dtypes Python Python 3 Python Boxplot Python Tips R rstats R Tips Seaborn Seaborn Boxplot Seaborn Catplot Shell Scripting Sparse Matrix in Python tidy evaluation tidyverse tidyverse 101 Vim Vim Tips

RSS RSS

  • How to convert row names to a column in Pandas
  • How to resize an image with PyTorch
  • Fashion-MNIST data from PyTorch
  • Pandas case_when() with multiple examples
  • An Introduction to Statistical Learning: with Applications in Python Is Here
  • 10 Tips to customize ggplot2 title text
  • 8 Plot types with Matplotlib in Python
  • PCA on S&P 500 Stock Return Data
  • Linear Regression with Matrix Decomposition Methods
  • Numpy’s random choice() function

Copyright © 2025 · Lifestyle Pro on Genesis Framework · WordPress · Log in

Go to mobile version